Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.242
Filtrar
1.
J Neuroinflammation ; 21(1): 106, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658922

RESUMO

BACKGROUND: Intracerebral hemorrhage (ICH) is a devastating neurological disease causing severe sensorimotor dysfunction and cognitive decline, yet there is no effective treatment strategy to alleviate outcomes of these patients. The Mas axis-mediated neuroprotection is involved in the pathology of various neurological diseases, however, the role of the Mas receptor in the setting of ICH remains to be elucidated. METHODS: C57BL/6 mice were used to establish the ICH model by injection of collagenase into mice striatum. The Mas receptor agonist AVE0991 was administered intranasally (0.9 mg/kg) after ICH. Using a combination of behavioral tests, Western blots, immunofluorescence staining, hematoma volume, brain edema, quantitative-PCR, TUNEL staining, Fluoro-Jade C staining, Nissl staining, and pharmacological methods, we examined the impact of intranasal application of AVE0991 on hematoma absorption and neurological outcomes following ICH and investigated the underlying mechanism. RESULTS: Mas receptor was found to be significantly expressed in activated microglia/macrophages, and the peak expression of Mas receptor in microglia/macrophages was observed at approximately 3-5 days, followed by a subsequent decline. Activation of Mas by AVE0991 post-treatment promoted hematoma absorption, reduced brain edema, and improved both short- and long-term neurological functions in ICH mice. Moreover, AVE0991 treatment effectively attenuated neuronal apoptosis, inhibited neutrophil infiltration, and reduced the release of inflammatory cytokines in perihematomal areas after ICH. Mechanistically, AVE0991 post-treatment significantly promoted the transformation of microglia/macrophages towards an anti-inflammatory, phagocytic, and reparative phenotype, and this functional phenotypic transition of microglia/macrophages by Mas activation was abolished by both Mas inhibitor A779 and Nrf2 inhibitor ML385. Furthermore, hematoma clearance and neuroprotective effects of AVE0991 treatment were reversed after microglia depletion in ICH. CONCLUSIONS: Mas activation can promote hematoma absorption, ameliorate neurological deficits, alleviate neuron apoptosis, reduced neuroinflammation, and regulate the function and phenotype of microglia/macrophages via Akt/Nrf2 signaling pathway after ICH. Thus, intranasal application of Mas agonist ACE0991 may provide promising strategy for clinical treatment of ICH patients.


Assuntos
Hematoma , Acidente Vascular Cerebral Hemorrágico , Camundongos Endogâmicos C57BL , Receptores Acoplados a Proteínas G , Recuperação de Função Fisiológica , Animais , Camundongos , Hematoma/tratamento farmacológico , Hematoma/patologia , Hematoma/metabolismo , Masculino , Acidente Vascular Cerebral Hemorrágico/patologia , Acidente Vascular Cerebral Hemorrágico/tratamento farmacológico , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Recuperação de Função Fisiológica/efeitos dos fármacos , Recuperação de Função Fisiológica/fisiologia , Proteínas Proto-Oncogênicas/metabolismo , Edema Encefálico/etiologia , Edema Encefálico/metabolismo , Edema Encefálico/tratamento farmacológico , Microglia/efeitos dos fármacos , Microglia/metabolismo
2.
Neuroreport ; 35(6): 352-360, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38526937

RESUMO

An imbalance of immune/inflammatory reactions aggravates secondary brain injury after traumatic brain injury (TBI) and can deteriorate clinical prognosis. So far, not enough therapeutic avenues have been found to prevent such an imbalance in the clinical setting. Progesterone has been shown to regulate immune/inflammatory reactions in many diseases and conveys a potential protective role in TBI. This study was designed to investigate the neuroprotective effects of progesterone associated with immune/inflammatory modulation in experimental TBI. A TBI model in adult male C57BL/6J mice was created using a controlled contusion instrument. After injury, the mice received consecutive progesterone therapy (8 mg/kg per day, i.p.) until euthanized. Neurological deficits were assessed via Morris water maze test. Brain edema was measured via the dry-wet weight method. Immunohistochemical staining and flow cytometry were used to examine the numbers of immune/inflammatory cells, including IBA-1 + microglia, myeloperoxidase + neutrophils, and regulatory T cells (Tregs). ELISA was used to detect the concentrations of IL-1ß, TNF-α, IL-10, and TGF-ß. Our data showed that progesterone therapy significantly improved neurological deficits and brain edema in experimental TBI, remarkably increased regulatory T cell numbers in the spleen, and dramatically reduced the activation and infiltration of inflammatory cells (microglia and neutrophils) in injured brain tissue. In addition, progesterone therapy decreased the expression of the pro-inflammatory cytokines IL-1ß and TNF-α but increased the expression of the anti-inflammatory cytokine IL-10 after TBI. These findings suggest that progesterone administration could be used to regulate immune/inflammatory reactions and improve outcomes in TBI.


Assuntos
Edema Encefálico , Lesões Encefálicas Traumáticas , Camundongos , Masculino , Animais , Interleucina-10 , Progesterona/farmacologia , Neuroproteção , Fator de Necrose Tumoral alfa/metabolismo , Edema Encefálico/tratamento farmacológico , Edema Encefálico/etiologia , Edema Encefálico/prevenção & controle , Camundongos Endogâmicos C57BL , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Citocinas/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Modelos Animais de Doenças , Microglia/metabolismo
3.
Int Immunopharmacol ; 131: 111869, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38492343

RESUMO

BACKGROUND AND PURPOSE: It has been reported activation of NLRP3 inflammasome after intracerebral hemorrhage (ICH) ictus exacerbates neuroinflammation and brain injury. We hypothesized that inhibition of NLRP3 by OLT1177 (dapansutrile), a novel NLRP3 inflammasome inhibitor, could reduce brain edema and attenuate brain injury in experimental ICH. METHODS: ICH was induced by injection of autologous blood into basal ganglia in mice models. Sixty-three C57Bl/6 male mice were randomly grouped into the sham, vehicle, OLT1177 (Dapansutrile, 200 mg/kg intraperitoneally) and treated for consecutive three days, starting from 1 h after ICH surgery. Behavioral test, brain edema, brain water content, blood-brain barrier integrity and vascular permeability, cell apoptosis, and NLRP3 and its downstream protein levels were measured. RESULTS: OLT1177 significantly reduced cerebral edema after ICH and contributed to the attenuation of neurological deficits. OLT1177 could preserve blood-brain barrier integrity and lessen vascular leakage. In addition, OLT1177 preserved microglia morphological shift and significantly inhibited the activation of caspase-1 and release of IL-1ß. We also found that OLT1177 can protect against neuronal loss in the affected hemisphere. CONCLUSIONS: OLT1177 (dapansutrile) could significantly attenuate the brain edema after ICH and effectively alleviate the neurological deficit. This result suggests that the novel NLRP3 inhibitor, OLT1177, might serve as a promising candidate for the treatment of ICH.


Assuntos
Edema Encefálico , Lesões Encefálicas , Nitrilas , Sulfonas , Camundongos , Masculino , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Edema Encefálico/tratamento farmacológico , Edema Encefálico/metabolismo , Hemorragia Cerebral/tratamento farmacológico , Hemorragia Cerebral/metabolismo , Lesões Encefálicas/metabolismo
4.
J Neurosurg Sci ; 68(1): 109-116, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38299491

RESUMO

BACKGROUND: This pilot study in post-stroke patients evaluated the effects of supplementation with Pycnogenol® on alterations in cognitive functions (COFU) over a period of 6 months, starting 4 weeks after the stroke. METHODS: The effects of supplementation - possibly acting on residual brain edema, on global cognitive function, attention and on mental performance - were studied. A control group used standard management (SM) and the other group added Pycnogenol®, 150 mg daily to SM. RESULTS: 38 post-stroke patients completed the 6-month-study, 20 in the Pycnogenol® group and 18 in the control group. No side effects were observed with the supplement. The tolerability was very good. The patients included into the two groups were comparable for age, sex and clinical distribution. There were 2 dropouts in the control group, due to non-medical problems. Main COFU parameters (assessed by a cognitive questionnaire) were significantly improved (all single items) with the supplement compared to controls (P<0.05). Additional observations indicate that Pycnogenol® patients experienced significantly less mini-accidents (including falls) than controls (P<0.05). The incidences of (minor) psychotic episodes or conflicts and distress and other problems including rare occurrence of minor hallucinations, were lower with the supplementation than in controls (P<0.05). Single observations concerning daily tasks indicated a better effect of Pycnogenol® compared to controls (P<0.05). Plasma free radicals also decreased significantly with the supplement in comparison to controls (P<0.05). Globally, supplemented subjects had a better recovery than controls. CONCLUSIONS: In post-stroke subjects, Pycnogenol® supplementation resulted in better recovery outcome and faster COFU 'normalization' after the stroke in comparison with SM; it can be considered a safe, manageable post-stroke, adjuvant management possibly reducing local brain edema. Nevertheless, more patients and a longer period of evaluation are needed to confirm these results.


Assuntos
Edema Encefálico , Humanos , Projetos Piloto , Edema Encefálico/tratamento farmacológico , Cognição , Extratos Vegetais/uso terapêutico , Extratos Vegetais/farmacologia , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Suplementos Nutricionais , Sistema de Registros
5.
Exp Neurol ; 374: 114705, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38290652

RESUMO

RIPK1, a receptor-interacting serine/threonine protein kinase, plays a crucial role in maintaining cellular and tissue homeostasis by integrating inflammatory responses and cell death signaling pathways including apoptosis and necroptosis, which have been implicated in diverse physiological and pathological processes. Suppression of RIPK1 activation is a promising strategy for restraining the pathological progression of many human diseases. Neuroinflammation and neuronal apoptosis are two pivotal factors in the pathogenesis of brain injury following subarachnoid hemorrhage (SAH). In this study, we established in vivo and in vitro models of SAH to investigate the activation of RIPK1 kinase in both microglia and neurons. We observed the correlation between RIPK1 kinase activity and microglia-mediated inflammation as well as neuronal apoptosis. We then investigated whether inhibition of RIPK1 could alleviate neuroinflammation and neuronal apoptosis following SAH, thereby reducing brain edema and ameliorating neurobehavioral deficits. Additionally, the underlying mechanisms were also explored. Our research findings revealed the activation of RIPK1 kinase in both microglia and neurons following SAH, as marked by the phosphorylation of RIPK1 at serine 166. The upregulation of p-RIPK1(S166) resulted in a significant augmentation of inflammatory cytokines and chemokines, including TNF-α, IL-6, IL-1α, CCL2, and CCL5, as well as neuronal apoptosis. The activation of RIPK1 in microglia and neurons following SAH could be effectively suppressed by administration of Nec-1 s, a specific inhibitor of RIPK1. Consequently, inhibition of RIPK1 resulted in a downregulation of inflammatory cytokines and chemokines and attenuation of neuronal apoptosis after SAH in vitro. Furthermore, the administration of Nec-1 s effectively mitigated neuroinflammation, neuronal apoptosis, brain edema, and neurobehavioral deficits in mice following SAH. Our findings suggest that inhibiting RIPK1 kinase represents a promising therapeutic strategy for mitigating brain injury after SAH by attenuating RIPK1-driven neuroinflammation and neuronal apoptosis.


Assuntos
Edema Encefálico , Lesões Encefálicas , Hemorragia Subaracnóidea , Animais , Camundongos , Apoptose , Edema Encefálico/tratamento farmacológico , Edema Encefálico/etiologia , Lesões Encefálicas/metabolismo , Quimiocinas/metabolismo , Citocinas/metabolismo , Doenças Neuroinflamatórias , Ratos Sprague-Dawley , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Serina , Hemorragia Subaracnóidea/metabolismo
7.
J Cereb Blood Flow Metab ; 44(3): 419-433, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37871622

RESUMO

Cerebral vasogenic edema, a severe complication of ischemic stroke, aggravates neurological deficits. However, therapeutics to reduce cerebral edema still represent a significant unmet medical need. Brain microvascular endothelial cells (BMECs), vital for maintaining the blood-brain barrier (BBB), represent the first defense barrier for vasogenic edema. Here, we analyzed the proteomic profiles of the cultured mouse BMECs during oxygen-glucose deprivation and reperfusion (OGD/R). Besides the extensively altered cytoskeletal proteins, ephrin type-A receptor 4 (EphA4) expressions and its activated phosphorylated form p-EphA4 were significantly increased. Blocking EphA4 using EphA4-Fc, a specific and well-tolerated inhibitor shown in our ongoing human phase I trial, effectively reduced OGD/R-induced BMECs contraction and tight junction damage. EphA4-Fc did not protect OGD/R-induced neuronal and astrocytic death. However, administration of EphA4-Fc, before or after the onset of transient middle cerebral artery occlusion (tMCAO), reduced brain edema by about 50%, leading to improved neurological function recovery. The BBB permeability test also confirmed that cerebral BBB integrity was well maintained in tMCAO brains treated with EphA4-Fc. Therefore, EphA4 was critical in signaling BMECs-mediated BBB breakdown and vasogenic edema during cerebral ischemia. EphA4-Fc is promising for the treatment of clinical post-stroke edema.


Assuntos
Edema Encefálico , Isquemia Encefálica , Acidente Vascular Cerebral , Camundongos , Humanos , Animais , Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Proteômica , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/metabolismo , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Edema Encefálico/tratamento farmacológico , Edema Encefálico/etiologia , Edema Encefálico/metabolismo , Oxigênio/metabolismo , Edema/metabolismo
8.
Glia ; 72(2): 322-337, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37828900

RESUMO

Cerebral edema is one of the deadliest complications of ischemic stroke for which there is currently no pharmaceutical treatment. Aquaporin-4 (AQP4), a water-channel polarized at the astrocyte endfoot, is known to be highly implicated in cerebral edema. We previously showed in randomized studies that (S)-roscovitine, a cyclin-dependent kinase inhibitor, reduced cerebral edema 48 h after induction of focal transient ischemia, but its mechanisms of action were unclear. In our recent blind randomized study, we confirmed that (S)-roscovitine was able to reduce cerebral edema by 65% at 24 h post-stroke (t test, p = .006). Immunofluorescence analysis of AQP4 distribution in astrocytes revealed that (S)-roscovitine decreased the non-perivascular pool of AQP4 by 53% and drastically increased AQP4 clusters in astrocyte perivascular end-feet (671%, t test p = .005) compared to vehicle. Non-perivascular and clustered AQP4 compartments were negatively correlated (R = -0.78; p < .0001), suggesting a communicating vessels effect between the two compartments. α1-syntrophin, AQP4 anchoring protein, was colocalized with AQP4 in astrocyte endfeet, and this colocalization was maintained in ischemic area as observed on confocal microscopy. Moreover, (S)-roscovitine increased AQP4/α1-syntrophin interaction (40%, MW p = .0083) as quantified by proximity ligation assay. The quantified interaction was negatively correlated with brain edema in both treated and placebo groups (R = -.57; p = .0074). We showed for the first time, that a kinase inhibitor modulated AQP4/α1-syntrophin interaction, and was implicated in the reduction of cerebral edema. These findings suggest that (S)-roscovitine may hold promise as a potential treatment for cerebral edema in ischemic stroke and as modulator of AQP4 function in other neurological diseases.


Assuntos
Edema Encefálico , AVC Isquêmico , Humanos , Edema Encefálico/tratamento farmacológico , Edema Encefálico/etiologia , Edema Encefálico/metabolismo , AVC Isquêmico/complicações , AVC Isquêmico/metabolismo , Roscovitina/uso terapêutico , Roscovitina/metabolismo , Aquaporina 4/metabolismo , Astrócitos/metabolismo
9.
Sci Rep ; 13(1): 21320, 2023 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-38044382

RESUMO

Subarachnoid hemorrhage (SAH) occurs most commonly after rupture of an aneurysm, resulting in high disability and mortality due to the absence of effective therapy. Its subsequent stage, early brain injury (EBI), promotes the sustainable development of injury in the brain and ultimately leads to poor prognosis. As a new antiepileptic drug, the effect of perampanel on EBI after SAH is unknown. Pyroptosis, a process of inflammatory programmed cell death, has been confirmed in most studies to play a substantial role in aggravating SAH-post EBI. Similarly, oxidative stress is closely involved in neuronal pyroptosis and the pathophysiological mechanism of SAH-post EBI, leading to a devastating outcome for SAH patients. Nonetheless, no studies have been conducted to determine whether perampanel reduces pyroptosis and oxidative stress in the context of SAH-induced EBI. Rat SAH model via endovascular perforation was constructed in this study, to assess the neuroprotective effect of perampanel on SAH-post EBI, and to clarify the possible molecular mechanism. By means of the neurological score, brain edema detection, FJB staining, immunofluorescence, WB, ELISA, and ROS assay, we found that perampanel can improve neuroscores and reduce brain edema and neuronal degeneration at 24 h after SAH; we also found that perampanel reduced oxidative stress, neuronal pyroptosis, and inhibition of the SIRT3-FOXO3α pathway at 24 h after SAH. When 3-TYP, an inhibitor of SIRT3, was administered, the effects of perampanel on the SIRT3-FOXO3a pathway, antioxidant stress, and neuronal pyroptosis were reversed. Taken together, our data indicate that perampanel attenuates oxidative stress and pyroptosis following subarachnoid hemorrhage via the SIRT3/FOXO3α pathway. This study highlights the application value of perampanel in subarachnoid hemorrhage and lays a foundation for clinical research and later transformation of perampanel in SAH.


Assuntos
Edema Encefálico , Lesões Encefálicas , Fármacos Neuroprotetores , Sirtuína 3 , Hemorragia Subaracnóidea , Humanos , Ratos , Animais , Piroptose , Sirtuína 3/metabolismo , Edema Encefálico/tratamento farmacológico , Hemorragia Subaracnóidea/tratamento farmacológico , Hemorragia Subaracnóidea/metabolismo , Estresse Oxidativo , Lesões Encefálicas/metabolismo , Apoptose , Fármacos Neuroprotetores/farmacologia
10.
J Neuroimmune Pharmacol ; 18(4): 628-639, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37919457

RESUMO

Glycoprotein non-metastatic melanoma protein B (GPNMB) got its name from the first discovery in a cell line of non-metastatic melanoma. Later studies found that GPNMB is widely expressed in various tissues and cells of the human body, most abundant in neural tissue, epithelial tissue, bone tissue, and monocyte-macrophage system. GPNMB has been shown to have anti-inflammatory effects in a variety of neurological diseases, however, it has not been reported in subarachnoid hemorrhage (SAH). Male CD-1 mice were used and intra-arterial puncture method was applied to establish the SAH model. Exogenous recombinant GPNMB (rGPNMB) was injected intracerebroventricularly 1 h after SAH. SAH grading, brain edema and blood-brain barrier (BBB) integrity were quantified, and neurobehavioral tests were performed to evaluate the effect of GPNMB on the outcome. Dorsomorphin, the selective inhibitor on AMPK was introduced to study the downstream signaling through which the GPNMB works. Furthermore, western blot, immunofluorescence staining and ELISA were utilized to confirm the signaling. After SAH, GPNMB expression increased significantly as a result of the inflammatory response. GPNMB was expressed extensively in mouse microglia, astrocytes and neurons. The administration of rGPNMB could alleviate brain edema, restore BBB integrity and improve the neurological outcome of mice with SAH. GPNMB treatment significantly magnified the expression of p-AMPK while p-NFκB, IL-1ß, IL-6 and TNF-α were suppressed; in the meantime, the combined administration of GPNMB and AMPK inhibitor could decrease the intensity of p-AMPK and reverse the quantity of p-NFκB and the above inflammatory cytokines. GPNMB has the potential of ameliorating the brain edema and neuroinflammation, protecting the BBB and improving the neurological outcome, possibly via the AMPK/NFκB signaling pathway.


Assuntos
Edema Encefálico , Melanoma , Hemorragia Subaracnóidea , Ratos , Camundongos , Masculino , Humanos , Animais , Hemorragia Subaracnóidea/tratamento farmacológico , Hemorragia Subaracnóidea/metabolismo , Hemorragia Subaracnóidea/patologia , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/farmacologia , Proteínas Quinases Ativadas por AMP/uso terapêutico , Edema Encefálico/tratamento farmacológico , Doenças Neuroinflamatórias , Ratos Sprague-Dawley , Transdução de Sinais , Glicoproteínas , Glicoproteínas de Membrana/farmacologia , Glicoproteínas de Membrana/uso terapêutico
11.
Nature ; 623(7989): 992-1000, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37968397

RESUMO

Cerebral oedema is associated with morbidity and mortality after traumatic brain injury (TBI)1. Noradrenaline levels are increased after TBI2-4, and the amplitude of the increase in noradrenaline predicts both the extent of injury5 and the likelihood of mortality6. Glymphatic impairment is both a feature of and a contributor to brain injury7,8, but its relationship with the injury-associated surge in noradrenaline is unclear. Here we report that acute post-traumatic oedema results from a suppression of glymphatic and lymphatic fluid flow that occurs in response to excessive systemic release of noradrenaline. This post-TBI adrenergic storm was associated with reduced contractility of cervical lymphatic vessels, consistent with diminished return of glymphatic and lymphatic fluid to the systemic circulation. Accordingly, pan-adrenergic receptor inhibition normalized central venous pressure and partly restored glymphatic and cervical lymphatic flow in a mouse model of TBI, and these actions led to substantially reduced brain oedema and improved functional outcomes. Furthermore, post-traumatic inhibition of adrenergic signalling boosted lymphatic export of cellular debris from the traumatic lesion, substantially reducing secondary inflammation and accumulation of phosphorylated tau. These observations suggest that targeting the noradrenergic control of central glymphatic flow may offer a therapeutic approach for treating acute TBI.


Assuntos
Edema Encefálico , Lesões Encefálicas Traumáticas , Sistema Glinfático , Norepinefrina , Animais , Camundongos , Antagonistas Adrenérgicos/farmacologia , Antagonistas Adrenérgicos/uso terapêutico , Edema Encefálico/complicações , Edema Encefálico/tratamento farmacológico , Edema Encefálico/metabolismo , Edema Encefálico/prevenção & controle , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Modelos Animais de Doenças , Sistema Glinfático/efeitos dos fármacos , Sistema Glinfático/metabolismo , Inflamação/complicações , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/prevenção & controle , Vasos Linfáticos/metabolismo , Norepinefrina/metabolismo , Fosforilação , Receptores Adrenérgicos/metabolismo
12.
J Stroke Cerebrovasc Dis ; 32(12): 107378, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37837803

RESUMO

OBJECTIVES: A post-hoc analysis of the ICH Deferoxamine (i-DEF) trial was performed to examine any associations pre-ICH statin use may have with ICH volume, PHE volume, and clinical outcomes. MATERIALS AND METHODS: Baseline characteristics were assessed. Various ICH and PHE parameters were measured via a quantitative, semi-automated method at baseline and follow-up CT scans 72-96 h later. A multivariable logistic regression model was created, adjusting for the variables that were significantly different on univariable analyses (p < 0.05), to assess any associations between pre-ICH statin use and measures of ICH and PHE, as well as good clinical outcome (mRS ≤2), at 90 and 180 days. RESULTS: 262 of 291 i-DEF participants had complete data available for analysis. 69 (26.3 %) used statins prior to ICH onset. Pre-ICH statin users had higher prevalences of hypertension, diabetes, and prior ischemic stroke; higher concomitant use of antihypertensives and antiplatelets; and higher blood glucose level at baseline. On univariable analyses, pre-ICH statin users had smaller baseline ICH volume and PHE volume on repeat scan, as well as smaller changes in relative PHE (rPHE) volume and edema extension distance (EED) between the baseline and repeat scans. In the multivariable analysis, none of the ICH and PHE measures or good clinical outcome was significantly associated with pre-ICH statin use. CONCLUSION: Pre-ICH statin use was not associated with measures of ICH or PHE, their growth, or clinical outcomes. These findings do not lend support to either overall protective or deleterious effects from statin use before or after ICH.


Assuntos
Edema Encefálico , Inibidores de Hidroximetilglutaril-CoA Redutases , Humanos , Edema Encefálico/tratamento farmacológico , Hemorragia Cerebral/induzido quimicamente , Hemorragia Cerebral/diagnóstico por imagem , Hemorragia Cerebral/complicações , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Tomografia Computadorizada por Raios X , Resultado do Tratamento
13.
Brain Res Bull ; 204: 110779, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37827266

RESUMO

Traumatic brain injury (TBI) is recognized as an important risk factor for cognitive deficits. The present study was designed to determine the potential neuroprotective effects of chrysin, a natural flavonoid compound, against TBI-induced spatial cognitive decline and the possible mechanisms involved. Oral administration of chrysin (25, 50, or 100 mg/kg/day) was initiated in rats immediately following the induction of the diffuse TBI model using the weight-dropping Marmarou model. Spatial cognitive ability, hippocampal synaptic plasticity, blood-brain barrier (BBB) permeability, brain water content, and histological changes were assessed at scheduled time points. The animals subjected to TBI exhibited spatial cognitive decline in the Morris water maze (MWM) test, which was accompanied by inhibition of hippocampal long-term potentiation (LTP) induction at the perforant path-dentate gyrus (PP-DG) synapses. Additionally, TBI caused BBB disruption, brain edema, and neuronal loss. Interestingly, treatment with chrysin (especially in the dose of 100 mg/kg) alleviated all the above-mentioned neuropathological changes related to TBI. The results provide evidence that chrysin improves TBI-induced spatial cognitive decline, which may be partly related to the amelioration of hippocampal synaptic dysfunction, alleviation of BBB disruption, reduction of brain edema, and prevention of neuronal loss.


Assuntos
Concussão Encefálica , Edema Encefálico , Lesões Encefálicas Traumáticas , Disfunção Cognitiva , Fármacos Neuroprotetores , Ratos , Animais , Concussão Encefálica/complicações , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Edema Encefálico/tratamento farmacológico , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/patologia , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/complicações , Hipocampo , Aprendizagem em Labirinto
14.
Cells ; 12(18)2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37759444

RESUMO

Brain swelling is a major cause of death and disability in ischemic stroke. Drugs of the gliflozin class, which target the Na+-coupled D-glucose cotransporter, SGLT2, are approved for type 2 diabetes mellitus (T2DM) and may be beneficial in other conditions, but data in cerebral ischemia are limited. We studied murine models of cerebral ischemia with middle cerebral artery occlusion/reperfusion (MCAo/R). Slc5a2/SGLT2 mRNA and protein were upregulated de novo in astrocytes. Live cell imaging of brain slices from mice following MCAo/R showed that astrocytes responded to modest increases in D-glucose by increasing intracellular Na+ and cell volume (cytotoxic edema), both of which were inhibited by the SGLT2 inhibitor, canagliflozin. The effect of canagliflozin was studied in three mouse models of stroke: non-diabetic and T2DM mice with a moderate ischemic insult (MCAo/R, 1/24 h) and non-diabetic mice with a severe ischemic insult (MCAo/R, 2/24 h). Canagliflozin reduced infarct volumes in models with moderate but not severe ischemic insults. However, canagliflozin significantly reduced hemispheric swelling and improved neurological function in all models tested. The ability of canagliflozin to reduce brain swelling regardless of an effect on infarct size has important translational implications, especially in large ischemic strokes.


Assuntos
Edema Encefálico , Isquemia Encefálica , Diabetes Mellitus Tipo 2 , AVC Isquêmico , Inibidores do Transportador 2 de Sódio-Glicose , Animais , Camundongos , Canagliflozina/farmacologia , Canagliflozina/uso terapêutico , Edema Encefálico/tratamento farmacológico , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Astrócitos , Transportador 2 de Glucose-Sódio , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Glucose , Íons , Isquemia Encefálica/tratamento farmacológico , Infarto
15.
Sci Rep ; 13(1): 14546, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37666857

RESUMO

Previously, we showed that Satureja Khuzestanica Jamzad essential oil (SKEO) and its major component, carvacrol (CAR), 5-isopropyl-2-methylphenol, has anti-inflammatory, anti-apoptotic, and anti-edematous properties after experimental traumatic brain injury (TBI) in rats. CAR, predominantly found in Lamiaceae family (Satureja and Oregano), is lipophilic, allowing diffusion across the blood-brain barrier (BBB). These experiments test the hypothesis that acute treatment with CAR after TBI can attenuate oxidative stress and BBB permeability associated with CAR's anti-edematous traits. Rats were divided into six groups and injured using Marmarou weight drop: Sham, TBI, TBI + Vehicle, TBI + CAR (100 and 200 mg/kg) and CAR200-naive treated rats. Intraperitoneal injection of vehicle or CAR was administered thirty minutes after TBI induction. 24 h post-injury, brain edema, BBB permeability, BBB-related protein levels, and oxidative capacity were measured. Data showed CAR 200 mg/kg treatment decreased brain edema and prevented BBB permeability. CAR200 decreased malondialdehyde (MDA) and reactive oxygen species (ROS) and increased superoxide dismutase (SOD) and total antioxidative capacity (T-AOC), indicating the mechanism of BBB protection is, in part, through antioxidant activity. Also, CAR 200 mg/kg treatment suppressed matrix metalloproteinase-9 (MMP-9) expression and increased ZO-1, occludin, and claudin-5 levels. These data indicate that CAR can promote antioxidant activity and decrease post-injury BBB permeability, further supporting CAR as a potential early therapeutic intervention that is inexpensive and more readily available worldwide. However, more experiments are required to determine CAR's long-term impact on TBI pathophysiology.


Assuntos
Edema Encefálico , Lesões Encefálicas Difusas , Lesões Encefálicas Traumáticas , Lesões Encefálicas , Animais , Ratos , Barreira Hematoencefálica , Antioxidantes , Lesões Encefálicas Traumáticas/tratamento farmacológico , Edema Encefálico/tratamento farmacológico , Edema Encefálico/etiologia , Excipientes
16.
Thorac Cancer ; 14(31): 3133-3139, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37718465

RESUMO

BACKGROUND: The aim of this study was to investigate the efficacy of bevacizumab (Bev) in reducing peritumoral brain edema (PTBE) after stereotactic radiotherapy (SRT) for lung cancer brain metastases. METHODS: A retrospective analysis was conducted on 44 patients with lung cancer brain metastases (70 lesions) who were admitted to our oncology and Gamma Knife center from January 2020 to May 2022. All patients received intracranial SRT and had PTBE. Based on treatment with Bev, patients were categorized as SRT + Bev and SRT groups. Follow-up head magnetic resonance imaging was performed to calculate PTBE and tumor volume changes. The edema index (EI) was used to assess the severity of PTBE. Additionally, the extent of tumor reduction and intracranial progression-free survival (PFS) were compared between the two groups. RESULTS: The SRT + Bev group showed a statistically significant difference in EI values before and after radiotherapy (p = 0.0115), with lower values observed after treatment, but there was no difference in the SRT group (p = 0.4008). There was a difference in the distribution of EI grades in the SRT + Bev group (p = 0.0186), with an increased proportion of patients at grades 1-2 after radiotherapy, while there was no difference in the SRT group (p > 0.9999). Both groups demonstrated a significant reduction in tumor volume after radiotherapy (p < 0.05), but there was no difference in tumor volume changes between the two groups (p = 0.4089). There was no difference in intracranial PFS between the two groups (p = 0.1541). CONCLUSION: Bevacizumab significantly reduces the severity of PTBE after radiotherapy for lung cancer. However, its impact on tumor volume reduction and intracranial PFS does not reach statistical significance.


Assuntos
Edema Encefálico , Neoplasias Encefálicas , Neoplasias Pulmonares , Radiocirurgia , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/etiologia , Bevacizumab/farmacologia , Bevacizumab/uso terapêutico , Edema Encefálico/tratamento farmacológico , Edema Encefálico/etiologia , Edema Encefálico/patologia , Estudos Retrospectivos , Radiocirurgia/métodos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/secundário
17.
Neurochirurgie ; 69(5): 101480, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37598622

RESUMO

OBJECTIVE: Unfavorable outcomes in patients with subarachnoid hemorrhage (SAH) are mainly attributed to early brain injury (EBI). Reduction of neuronal death can improve the prognosis in SAH patients. Autophagy and apoptosis are critical players in neuronal death. Urolithin A (UA) is a natural compound produced by gut bacteria from ingested ellagitannins and ellagic acid. Here, we detected the role of UA in EBI post-SAH. METHODS: We established an animal model of SAH in rats by endovascular perforation, with administration of UA, 3-methyladenine (3-MA) and Compound C. SAH grading, neurological function, brain water content, western blotting analysis of levels of proteins related to apoptosis, autophagy and pathways, blood-brain barrier (BBB) integrity, TUNEL staining, and immunofluorescence staining of LC3 were evaluated at 24h after SAH. RESULTS: SAH induction led to neurological dysfunctions, BBB disruption, and cerebral edema at 24h post-SAH in rats, which were relieved by UA. Additionally, cortical neuronal apoptosis in SAH rats was also attenuated by UA. Moreover, UA restored autophagy level in SAH rats. Mechanistically, UA activated the AMPK/mTOR pathway. Furthermore, inhibition of autophagy and AMPK limited UA-mediated protection against EBI post-SAH CONCLUSION: UA alleviates neurological deficits, BBB permeability, and cerebral edema by inhibiting cortical neuronal apoptosis through regulating the AMPK/mTOR pathway-dependent autophagy in rats following SAH.


Assuntos
Edema Encefálico , Lesões Encefálicas , Hemorragia Subaracnóidea , Humanos , Ratos , Animais , Hemorragia Subaracnóidea/tratamento farmacológico , Proteínas Quinases Ativadas por AMP/metabolismo , Edema Encefálico/tratamento farmacológico , Edema Encefálico/etiologia , Ratos Sprague-Dawley , Lesões Encefálicas/tratamento farmacológico , Serina-Treonina Quinases TOR/metabolismo , Autofagia/fisiologia
18.
Front Immunol ; 14: 1172334, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37614235

RESUMO

Microglial activation and subsequent inflammatory responses are critical processes in aggravating secondary brain injury after intracerebral hemorrhage (ICH). Pterostilbene (3', 5'-dimethoxy-resveratrol) features antioxidant and anti-inflammation properties and has been proven neuroprotective. In this study, we aimed to explore whether Pterostilbene could attenuate neuroinflammation after experimental ICH, as well as underlying molecular mechanisms. Here, a collagenase-induced ICH in mice was followed by intraperitoneal injection of Pterostilbene (10 mg/kg) or vehicle once daily. PTE-treated mice performed significantly better than vehicle-treated controls in the neurological behavior test after ICH. Furthermore, our results showed that Pterostilbene reduced lesion volume and neural apoptosis, and alleviated blood-brain barrier (BBB) damage and brain edema. RNA sequencing and subsequent experiments showed that ICH-induced neuroinflammation and microglial proinflammatory activities were markedly suppressed by Pterostilbene treatment. With regard to the mechanisms, we identified that the anti-inflammatory effects of Pterostilbene relied on remodeling mitochondrial dynamics in microglia. Concretely, Pterostilbene reversed the downregulation of OPA1, promoted mitochondrial fusion, restored normal mitochondrial morphology, and reduced mitochondrial fragmentation and superoxide in microglia after OxyHb treatment. Moreover, conditionally deleting microglial OPA1 in mice largely countered the effects of Pterostilbene on alleviating microglial inflammation, BBB damage, brain edema and neurological impairment following ICH. In summary, we provided the first evidence that Pterostilbene is a promising agent for alleviating neuroinflammation and brain injury after ICH in mice, and uncovered a novel regulatory relationship between Pterostilbene and OPA1-mediated mitochondrial fusion.


Assuntos
Edema Encefálico , Lesões Encefálicas , Animais , Camundongos , Doenças Neuroinflamatórias , Microglia , Edema Encefálico/tratamento farmacológico , Edema Encefálico/etiologia , Inflamação/tratamento farmacológico , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/etiologia , Hemorragia Cerebral/tratamento farmacológico
19.
Biomed Eng Online ; 22(1): 80, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37582824

RESUMO

BACKGROUND: Cerebral edema is an extremely common secondary disease in post-stroke. Point-of-care testing for cerebral edema types has important clinical significance for the precise management to prevent poor prognosis. Nevertheless, there has not been a fully accepted bedside testing method for that. METHODS: A symmetric cancellation near-field coupling phase shift (NFCPS) monitoring system is established based on the symmetry of the left and right hemispheres and the fact that unilateral lesions do not affect healthy hemispheres. For exploring the feasibility of this system to reflect the occurrence and development of cerebral edema, 13 rabbits divided into experimental group (n = 8) and control group (n = 5) were performed 24-h NFCPS continuous monitoring experiments. After time difference offset and feature band averaging processing, the changing trend of NFCPS at the stages dominated by cytotoxic edema (CE) and vasogenic edema (VE), respectively, was analyzed. Furthermore, the features under the different time windows were extracted. Then, a discriminative model of cerebral edema types based on support vector machines (SVM) was established and performance of multiple feature combinations was compared. RESULTS: The NFCPS monitoring outcomes of experimental group endured focal ischemia modeling by thrombin injection show a trend of first decreasing and then increasing, reaching the lowest value of - 35.05° at the 6th hour. Those of control group do not display obvious upward or downward trend and only fluctuate around the initial value with an average change of - 0.12°. Furthermore, four features under the 1-h and 2-h time windows were extracted. Based on the discriminative model of cerebral edema types, the classification accuracy of 1-h window is higher than 90% and the specificity is close to 1, which is almost the same as the performance of the 2-h window. CONCLUSION: This study proves the feasibility of NFCPS technology combined with SVM to distinguish cerebral edema types in a short time, which is promised to become a new solution for immediate and precise management of dehydration therapy after ischemic stroke.


Assuntos
Edema Encefálico , Acidente Vascular Cerebral , Animais , Coelhos , Edema Encefálico/tratamento farmacológico , Máquina de Vetores de Suporte , Testes Imediatos
20.
Pharm Res ; 40(11): 2541-2554, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37498500

RESUMO

BACKGROUND: Cerebral vascular protection is critical for stroke treatment. Adenosine modulates vascular flow and exhibits neuroprotective effects, in which brain extracellular concentration of adenosine is dramatically increased during ischemic events and ischemia-reperfusion. Since the equilibrative nucleoside transporter-2 (Ent2) is important in regulating brain adenosine homeostasis, the present study aimed to investigate the role of Ent2 in mice with cerebral ischemia-reperfusion. METHODS: Cerebral ischemia-reperfusion injury was examined in mice with transient middle cerebral artery occlusion (tMCAO) for 90 minutes, followed by 24-hour reperfusion. Infarct volume, brain edema, neuroinflammation, microvascular structure, regional cerebral blood flow (rCBF), cerebral metabolic rate of oxygen (CMRO2), and the production of reactive oxygen species (ROS) were examined following the reperfusion. RESULTS: Ent2 deletion reduced the infarct volume, brain edema, and neuroinflammation in mice with cerebral ischemia-reperfusion. tMCAO-induced disruption of brain microvessels was ameliorated in Ent2-/- mice, with a reduced expression of matrix metalloproteinases-9 and aquaporin-4 proteins. Following the reperfusion, the rCBF of the wild-type (WT) mice was quickly restored to the baseline, whereas, in Ent2-/- mice, rCBF was slowly recovered initially, but was then higher than that in the WT mice at the later phase of reperfusion. The improved CMRO2 and reduced ROS level support the beneficial effects caused by the changes in the rCBF of Ent2-/- mice. Further studies showed that the protective effects of Ent2 deletion in mice with tMCAO involve adenosine receptor A2AR. CONCLUSIONS: Ent2 plays a critical role in modulating cerebral collateral circulation and ameliorating pathological events of brain ischemia and reperfusion injury.


Assuntos
Edema Encefálico , Isquemia Encefálica , Traumatismo por Reperfusão , Animais , Camundongos , Adenosina , Edema Encefálico/tratamento farmacológico , Edema Encefálico/patologia , Isquemia Encefálica/tratamento farmacológico , Infarto da Artéria Cerebral Média/tratamento farmacológico , Doenças Neuroinflamatórias , Proteínas de Transporte de Nucleosídeos , Espécies Reativas de Oxigênio/metabolismo , Reperfusão , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...